organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(tert-Butyliminomethyl)-1,1'-binaphthol ethanol solvate

Xiao-Yan Ma, Lin-Zhi Zhong, Wei Wu, Kun Wang and **Rui-Xiang Li***

Institute of Homogeneous Catalysis, Department of Chemistry, Sichuan University, Chengdu 610064 People's Republic of China Correspondence e-mail: sculiruixiang@163.com

Received 13 September 2007; accepted 26 September 2007

Key indicators: single-crystal X-ray study: T = 294 K: mean $\sigma(C-C) = 0.003$ Å: R factor = 0.060; wR factor = 0.128; data-to-parameter ratio = 14.9.

The 1,1'-bi-2,2'-naphthol (BINOL) backbone of the title compound, C₂₅H₂₃NO₂·C₂H₆O, indicates that it has potential in asymmetric catalysis, with the two hydroxy and the imino groups providing sites for coordination with metal ions as an O/N heterotridentate ligand. There is an intramolecular O- $H \cdot \cdot \cdot N$ hydrogen bond which forms a ring, and intermolecular $O-H \cdots O$ hydrogen bonds to the ethanol solvent molecule, which link two ethanol molecules and two naphthol molecules around a centre of symmetry.

Related literature

For background on the application of salen complexes to asymmetric catalysis, see: Pu (1998). For details of the synthesis, see: Chin et al. (2004).

Experimental

Crystal data

m

1591 reflections with $I > 2\sigma(I)$

3 standard reflections

every 300 reflections

intensity decay: 0.9%

 $R_{\rm int} = 0.007$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 4249 measured reflections 4243 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	285 parameters
$wR(F^2) = 0.128$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
4243 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1 Н

lyd	lrogen-	bond	geomet	ry (Α,	ັ).	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$\mathbf{H} \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01 - H1 \cdots N$ $02 - H2 \cdots O3$	0.82 0.82	1.79 1.87	2.530 (3) 2.684 (2)	148 170
03-H3···01	0.82	2.06	2.828 (2)	156

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2049).

References

- Bruker (2005). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chin, J., Kim, D. C., Kim, H. J., Francis, B. P. & Kim, K. M. (2004). Org. Lett. 6, 2591-2593
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.
- Pu, L. (1998). Chem. Rev. 98, 2405-2494.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4288 [doi:10.1107/S1600536807047435]

3-(tert-Butyliminomethyl)-1,1'-binaphthol ethanol solvate

X.-Y. Ma, L.-Z. Zhong, W. Wu, K. Wang and R.-X. Li

Comment

BINOL and its derivatives have been extensively used in chiral recognition and asymmetric catalysis (Pu, 1998). Herein we present the structure of the title compound, as a continuation of our previous studies.

As shown in Fig. 1, an intramolecular O—H…N hydrogen bond between the hydroxy and the imino groups forms a ring.

The molecules are connected by O—H…O hydrogen bonds to the ethanol, Fig. 2.

Experimental

The salen ligand, 3-((*p*-tolylimino)methyl)-di-1,1'-binaphthol was prepared by condensation of 3-carboxaldehyde-1,1'-binaphthol with *tert*-butylamine, which was prepared by reported methods (Chin *et al.*, 2004). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol–methylene chloride (1:5) solution of the compound.

Refinement

All the H atoms were placed in calculated positions and refined using the riding-model approximation.

Figures

Fig. 1. A perspective view of the title compound. Ellipsoids are drawn at the 30% probability level.

Fig. 2. A view down the b axis showing intermolecular hydrogen bonding in the crystal structure.

3-(tert-Butyliminomethyl)-1,1'-binaphthol ethanol solvate

Crystal data	
$C_{25}H_{23}NO_2 \cdot C_2H_6O$	Z = 2
$M_r = 415.51$	$F_{000} = 444$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.205 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.538 (2) Å	Cell parameters from 17 reflections
b = 10.883 (2) Å	$\theta = 4.6 - 7.4^{\circ}$
c = 11.628 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 74.27 \ (3)^{\circ}$	T = 294 (2) K
$\beta = 63.15 \ (3)^{\circ}$	Block, red
$\gamma = 81.66 \ (3)^{\circ}$	$0.38\times0.32\times0.23~mm$
$V = 1144.8 (5) \text{ Å}^3$	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\text{int}} = 0.007$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.9^{\circ}$
T = 294(2) K	$h = -12 \rightarrow 12$
$\omega/2\theta$ scans	$k = -5 \rightarrow 13$
Absorption correction: none	$l = -13 \rightarrow 14$
4249 measured reflections	3 standard reflections
4243 independent reflections	every 300 reflections
1591 reflections with $I > 2\sigma(I)$	intensity decay: 0.9%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.060$	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.128$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
4243 reflections	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
285 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0106 (18)

methods

Secondary atom site location: difference Fourier map

Special details

Experimental. The data are rather weak, as indicated by the poor fraction of observed reflections. This could be caused by a combination of factors, including an old *x*-ray tube and a crystal consisting of C, H, O, N atoms only. Nevertheless, the structure is complete and the refinement was stable.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.23813 (14)	0.25295 (15)	0.00754 (14)	0.0714 (5)
H1	0.2308	0.2413	-0.0560	0.107*
O2	0.29138 (15)	0.51814 (14)	0.13021 (16)	0.0765 (5)
H2	0.3533	0.5671	0.1126	0.115*
Ν	0.11745 (18)	0.22122 (17)	-0.12695 (17)	0.0622 (6)
C1	0.1127 (2)	0.3002 (2)	0.0889 (2)	0.0531 (7)
C2	0.1015 (2)	0.32673 (19)	0.2017 (2)	0.0465 (6)
C3	-0.0321 (2)	0.36873 (19)	0.2912 (2)	0.0476 (6)
C4	-0.0533 (2)	0.38853 (19)	0.4145 (2)	0.0553 (7)
H4A	0.0235	0.3789	0.4355	0.066*
C5	-0.1833 (2)	0.4212 (2)	0.5020 (2)	0.0662 (7)
H5A	-0.1951	0.4316	0.5831	0.079*
C6	-0.3004 (2)	0.4397 (2)	0.4716 (2)	0.0749 (8)
H6A	-0.3892	0.4622	0.5323	0.090*
C7	-0.2834 (2)	0.4246 (2)	0.3531 (2)	0.0711 (8)
H7A	-0.3610	0.4389	0.3328	0.085*
C8	-0.1503 (2)	0.38757 (19)	0.2599 (2)	0.0517 (6)
C9	-0.1306 (2)	0.3642 (2)	0.1395 (2)	0.0584 (7)
H9A	-0.2062	0.3807	0.1164	0.070*
C10	-0.0050 (2)	0.3184 (2)	0.0554 (2)	0.0517 (6)
C11	0.0085 (2)	0.2836 (2)	-0.0631 (2)	0.0584 (7)
H11A	-0.0631	0.3073	-0.0914	0.070*
C12	0.1377 (3)	0.1757 (2)	-0.2426 (2)	0.0725 (8)
C13	0.2872 (3)	0.2117 (3)	-0.3442 (3)	0.1122 (12)
H13A	0.3527	0.1765	-0.3063	0.168*
H13B	0.2935	0.3030	-0.3707	0.168*
H13C	0.3106	0.1784	-0.4201	0.168*
C14	0.1281 (3)	0.0320 (2)	-0.1994 (3)	0.1163 (11)
H14A	0.0319	0.0092	-0.1381	0.175*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14B	0.1900	-0.0020	-0.1573	0.175*
H14C	0.1563	-0.0025	-0.2755	0.175*
C15	0.0337 (3)	0.2332 (3)	-0.3008 (3)	0.1185 (11)
H15A	-0.0605	0.2055	-0.2381	0.178*
H15B	0.0600	0.2059	-0.3807	0.178*
H15C	0.0357	0.3247	-0.3205	0.178*
C16	0.2282 (2)	0.3038 (2)	0.2312 (2)	0.0469 (6)
C17	0.3201 (2)	0.3998 (2)	0.1930 (2)	0.0540 (6)
C18	0.4422 (2)	0.3778 (2)	0.2172 (2)	0.0638 (7)
H18A	0.5024	0.4444	0.1923	0.077*
C19	0.4707 (2)	0.2594 (2)	0.2766 (2)	0.0671 (7)
H19A	0.5528	0.2450	0.2900	0.080*
C20	0.3808 (2)	0.1575 (2)	0.3187 (2)	0.0552 (7)
C21	0.4097 (3)	0.0347 (2)	0.3816 (2)	0.0747 (8)
H21A	0.4917	0.0199	0.3950	0.090*
C22	0.3207 (3)	-0.0630 (3)	0.4234 (3)	0.0834 (9)
H22A	0.3411	-0.1437	0.4656	0.100*
C23	0.1980 (3)	-0.0410 (2)	0.4022 (2)	0.0796 (9)
H23A	0.1365	-0.1075	0.4311	0.096*
C24	0.1670 (2)	0.0769 (2)	0.3398 (2)	0.0613 (7)
H24A	0.0853	0.0893	0.3261	0.074*
C25	0.2570 (2)	0.1797 (2)	0.2961 (2)	0.0513 (6)
O3	0.47214 (17)	0.68639 (16)	0.10162 (18)	0.0984 (7)
H3	0.5567	0.6966	0.0511	0.148*
C26	0.4083 (3)	0.8033 (3)	0.1328 (3)	0.1012 (11)
H26A	0.4742	0.8488	0.1426	0.121*
H26B	0.3242	0.7867	0.2168	0.121*
C27	0.3677 (4)	0.8845 (3)	0.0288 (3)	0.1396 (15)
H27A	0.3169	0.9596	0.0569	0.209*
H27B	0.3081	0.8374	0.0143	0.209*
H27C	0.4519	0.9089	-0.0521	0.209*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0537 (8)	0.1142 (12)	0.0639 (9)	0.0069 (9)	-0.0302 (7)	-0.0440 (9)
O2	0.0724 (9)	0.0695 (11)	0.1014 (11)	-0.0121 (9)	-0.0543 (9)	-0.0057 (9)
Ν	0.0721 (11)	0.0697 (13)	0.0620 (11)	0.0085 (10)	-0.0401 (10)	-0.0271 (10)
C1	0.0419 (12)	0.0615 (15)	0.0629 (14)	0.0039 (11)	-0.0250 (11)	-0.0238 (12)
C2	0.0440 (11)	0.0521 (13)	0.0491 (13)	-0.0024 (11)	-0.0232 (10)	-0.0146 (11)
C3	0.0488 (12)	0.0479 (13)	0.0532 (13)	-0.0003 (11)	-0.0262 (10)	-0.0159 (11)
C4	0.0499 (12)	0.0612 (15)	0.0614 (14)	-0.0012 (12)	-0.0266 (11)	-0.0201 (12)
C5	0.0610 (14)	0.0778 (16)	0.0662 (15)	0.0030 (13)	-0.0247 (12)	-0.0344 (13)
C6	0.0507 (14)	0.0947 (18)	0.0915 (17)	0.0131 (13)	-0.0292 (13)	-0.0511 (15)
C7	0.0539 (13)	0.0862 (17)	0.0958 (17)	0.0199 (13)	-0.0435 (13)	-0.0474 (14)
C8	0.0480 (12)	0.0494 (14)	0.0668 (14)	0.0016 (11)	-0.0285 (11)	-0.0226 (11)
C9	0.0525 (12)	0.0641 (15)	0.0822 (15)	0.0089 (12)	-0.0454 (11)	-0.0295 (12)
C10	0.0479 (12)	0.0601 (15)	0.0580 (14)	0.0013 (11)	-0.0314 (11)	-0.0165 (11)

C11	0.0685 (13)	0.0624 (15)	0.0639 (14)	-0.0033 (12)	-0.0455 (12)	-0.0136 (12)
C12	0.0925 (17)	0.0819 (18)	0.0570 (14)	0.0030 (15)	-0.0403 (13)	-0.0261 (13)
C13	0.129 (2)	0.122 (2)	0.075 (2)	0.000 (2)	-0.0265 (19)	-0.0417 (18)
C14	0.192 (3)	0.077 (2)	0.103 (2)	-0.002 (2)	-0.082 (2)	-0.0257 (17)
C15	0.156 (2)	0.149 (3)	0.1035 (19)	0.034 (2)	-0.1005 (17)	-0.0517 (18)
C16	0.0381 (11)	0.0618 (14)	0.0489 (13)	0.0007 (11)	-0.0224 (10)	-0.0202 (11)
C17	0.0510 (12)	0.0637 (15)	0.0585 (14)	-0.0015 (12)	-0.0319 (11)	-0.0167 (12)
C18	0.0552 (13)	0.0801 (18)	0.0756 (15)	-0.0063 (13)	-0.0418 (12)	-0.0218 (13)
C19	0.0515 (13)	0.0961 (19)	0.0725 (15)	0.0053 (14)	-0.0393 (12)	-0.0301 (14)
C20	0.0502 (12)	0.0728 (16)	0.0509 (13)	0.0081 (12)	-0.0264 (11)	-0.0243 (12)
C21	0.0834 (16)	0.0813 (18)	0.0788 (16)	0.0238 (15)	-0.0507 (13)	-0.0339 (14)
C22	0.1048 (19)	0.0683 (18)	0.0862 (18)	0.0195 (16)	-0.0547 (16)	-0.0196 (15)
C23	0.0879 (18)	0.0596 (17)	0.0850 (19)	-0.0023 (15)	-0.0317 (16)	-0.0170 (15)
C24	0.0583 (13)	0.0584 (16)	0.0728 (16)	0.0023 (13)	-0.0336 (12)	-0.0164 (13)
C25	0.0471 (12)	0.0638 (15)	0.0496 (13)	0.0021 (12)	-0.0208 (11)	-0.0254 (12)
O3	0.0676 (11)	0.0905 (12)	0.1351 (15)	-0.0118 (10)	-0.0260 (11)	-0.0503 (11)
C26	0.0854 (19)	0.107 (2)	0.113 (2)	-0.0059 (18)	-0.0273 (18)	-0.0545 (19)
C27	0.171 (3)	0.126 (3)	0.111 (3)	0.006 (3)	-0.057 (2)	-0.022 (2)

Geometric parameters (Å, °)

O1-C1	1.358 (2)	C14—H14A	0.9600
01—H1	0.8200	C14—H14B	0.9600
O2—C17	1.364 (3)	C14—H14C	0.9600
O2—H2	0.8200	C15—H15A	0.9600
N-C11	1.268 (3)	C15—H15B	0.9600
N—C12	1.473 (3)	C15—H15C	0.9600
C1—C2	1.368 (3)	C16—C17	1.371 (3)
C1—C10	1.433 (3)	C16—C25	1.421 (3)
C2—C3	1.422 (3)	C17—C18	1.411 (3)
C2—C16	1.494 (3)	C18—C19	1.350 (3)
C3—C4	1.419 (3)	C18—H18A	0.9300
C3—C8	1.422 (3)	C19—C20	1.400 (3)
C4—C5	1.354 (3)	C19—H19A	0.9300
C4—H4A	0.9300	C20—C21	1.402 (3)
С5—С6	1.404 (3)	C20—C25	1.419 (3)
С5—Н5А	0.9300	C21—C22	1.358 (3)
C6—C7	1.361 (3)	C21—H21A	0.9300
С6—Н6А	0.9300	C22—C23	1.398 (3)
С7—С8	1.416 (3)	C22—H22A	0.9300
С7—Н7А	0.9300	C23—C24	1.366 (3)
С8—С9	1.408 (3)	C23—H23A	0.9300
C9—C10	1.364 (3)	C24—C25	1.404 (3)
С9—Н9А	0.9300	C24—H24A	0.9300
C10—C11	1.468 (3)	O3—C26	1.409 (3)
C11—H11A	0.9300	O3—H3	0.8200
C12—C13	1.510 (3)	C26—C27	1.485 (4)
C12—C14	1.511 (3)	C26—H26A	0.9700
C12—C15	1.514 (3)	C26—H26B	0.9700

С13—Н13А	0.9600	C27—H27A	0.9600
C13—H13B	0.9600	С27—Н27В	0.9600
С13—Н13С	0.9600	С27—Н27С	0.9600
C1—O1—H1	109.5	H14A—C14—H14C	109.5
С17—О2—Н2	109.5	H14B—C14—H14C	109.5
C11—N—C12	124.3 (2)	С12—С15—Н15А	109.5
O1—C1—C2	119.2 (2)	С12—С15—Н15В	109.5
O1—C1—C10	118.9 (2)	H15A—C15—H15B	109.5
C2—C1—C10	121.89 (19)	С12—С15—Н15С	109.5
C1—C2—C3	119.3 (2)	H15A—C15—H15C	109.5
C1—C2—C16	118.98 (18)	H15B—C15—H15C	109.5
C3—C2—C16	121.6 (2)	C17—C16—C25	119.2 (2)
C4—C3—C8	118.28 (19)	C17—C16—C2	121.1 (2)
C4—C3—C2	122.0 (2)	C25—C16—C2	119.73 (19)
C8—C3—C2	119.7 (2)	O2—C17—C16	118.4 (2)
C5-C4-C3	121.1 (2)	02	120.2 (2)
C5—C4—H4A	119.4	C16-C17-C18	121.3(2)
C3—C4—H4A	119.4	C19 - C18 - C17	1194(2)
C4-C5-C6	120.8 (2)	C19 - C18 - H18A	120.3
C4—C5—H5A	119.6	C17— $C18$ — $H18A$	120.3
C6—C5—H5A	119.6	C_{18} C_{19} C_{20}	120.5 122.1(2)
C7 - C6 - C5	119.8 (2)	C18 - C19 - H19A	119.0
C7—C6—H6A	120.1	C_{10} C_{19} H_{19A}	119.0
C5-C6-H6A	120.1	$C_{19} - C_{20} - C_{21}$	117.0 122.1(2)
C_{6}^{-} C_{7}^{-} C_{8}^{8}	120.1 121 A (2)	$C_{10} = C_{20} = C_{25}$	122.1(2) 118.6(2)
C6_C7_H7A	110.3	$C_{1} = C_{20} = C_{25}$	110.0(2) 110.3(2)
C8_C7_H7A	119.5	$C_{21} = C_{20} = C_{23}$	117.5(2) 121.5(3)
$C_0 C_1 C_1$	122.9 (2)	$C_{22} = C_{21} = C_{20}$	121.5 (5)
$C_{2} = C_{3} = C_{1}$	122.9(2)	$C_{22} = C_{21} = H_{21A}$	119.2
$C_{2} = C_{3} = C_{2}$	110.41 (19)	C_{20} C_{21} C_{22} C_{23}	119.2
$C_{1} = C_{3} = C_{3}$	110.0(2) 122.6(2)	$C_{21} = C_{22} = C_{23}$	119.5 (5)
$C_{10} = C_{9} = C_{8}$	122.0 (2)	C_{21} C_{22} C_{22} H_{22A}	120.4
C_{10} C_{20} C	110.7	C_{23} C_{22} C_{22} C_{22} C_{23} C_{23} C_{23}	120.4
C_{0} C_{10} C_{1}	110.7	$C_{24} = C_{23} = C_{22}$	121.0 (5)
$C_{9} = C_{10} = C_{11}$	118.0(2)	C_{24} C_{23} H_{23A}	119.5
$C_{9} = C_{10} = C_{11}$	121.3(2)	$C_{22} = C_{23} = H_{23}A$	119.5
CI = CI0 = CII	120.62(19)	$C_{23} = C_{24} = C_{23}$	120.9 (2)
	120.1 (2)	$C_{23} - C_{24} - H_{24A}$	119.5
N—CII—HIIA	120.0	C25C24H24A	119.5
	120.0	$C_{24} = C_{25} = C_{20}$	118.0 (2)
N-C12-C13	105.0 (2)	$C_{24} = C_{25} = C_{16}$	122.6 (2)
N—C12—C14	107.0 (2)	$C_{20} = C_{25} = C_{16}$	119.4 (2)
C13-C12-C14	109.5 (2)	C26—O3—H3	109.5
N—C12—C15	114.6 (2)	03-026-027	111.7 (3)
C13-C12-C15	109.7 (2)	O3—C26—H26A	109.3
C14—C12—C15	110.8 (2)	C2/-C26-H26A	109.3
C12—C13—H13A	109.5	U3-C26-H26B	109.3
C12—C13—H13B	109.5	C2/—C26—H26B	109.3
Н13А—С13—Н13В	109.5	H26A—C26—H26B	107.9
C12—C13—H13C	109.5	С26—С27—Н27А	109.5

H13A—C13—H13C	109.5	С26—С27—Н27В	109.5
H13B—C13—H13C	109.5	H27A—C27—H27B	109.5
C12—C14—H14A	109.5	С26—С27—Н27С	109.5
C12—C14—H14B	109.5	H27A—C27—H27C	109.5
H14A—C14—H14B	109.5	H27B—C27—H27C	109.5
C12—C14—H14C	109.5		
O1—C1—C2—C3	-176.13 (18)	C11—N—C12—C14	-110.2 (3)
C10—C1—C2—C3	2.5 (3)	C11—N—C12—C15	13.0 (3)
O1—C1—C2—C16	0.5 (3)	C1—C2—C16—C17	93.7 (3)
C10-C1-C2-C16	179.18 (19)	C3—C2—C16—C17	-89.7 (3)
C1—C2—C3—C4	175.2 (2)	C1—C2—C16—C25	-84.2 (3)
C16—C2—C3—C4	-1.4 (3)	C3—C2—C16—C25	92.3 (3)
C1—C2—C3—C8	-2.6 (3)	C25—C16—C17—O2	179.68 (19)
C16—C2—C3—C8	-179.11 (19)	C2—C16—C17—O2	1.7 (3)
C8—C3—C4—C5	1.7 (3)	C25-C16-C17-C18	-0.2 (3)
C2—C3—C4—C5	-176.0 (2)	C2-C16-C17-C18	-178.1 (2)
C3—C4—C5—C6	-1.6 (3)	O2-C17-C18-C19	-178.4 (2)
C4—C5—C6—C7	0.0 (4)	C16-C17-C18-C19	1.4 (3)
C5—C6—C7—C8	1.4 (4)	C17-C18-C19-C20	-1.8 (4)
C6—C7—C8—C9	176.4 (2)	C18-C19-C20-C21	-179.4 (2)
C6—C7—C8—C3	-1.3 (3)	C18—C19—C20—C25	1.0 (3)
C4—C3—C8—C9	-178.08 (19)	C19—C20—C21—C22	179.2 (2)
C2—C3—C8—C9	-0.3 (3)	C25—C20—C21—C22	-1.1 (4)
C4—C3—C8—C7	-0.2 (3)	C20-C21-C22-C23	0.5 (4)
C2—C3—C8—C7	177.57 (19)	C21—C22—C23—C24	0.3 (4)
C7—C8—C9—C10	-174.4 (2)	C22—C23—C24—C25	-0.6 (4)
C3—C8—C9—C10	3.3 (3)	C23—C24—C25—C20	0.0 (3)
C8—C9—C10—C1	-3.4 (3)	C23—C24—C25—C16	-179.8 (2)
C8—C9—C10—C11	174.17 (19)	C19—C20—C25—C24	-179.5 (2)
O1—C1—C10—C9	179.05 (19)	C21—C20—C25—C24	0.8 (3)
C2-C1-C10-C9	0.4 (3)	C19—C20—C25—C16	0.3 (3)
O1—C1—C10—C11	1.5 (3)	C21-C20-C25-C16	-179.4 (2)
C2-C1-C10-C11	-177.19 (19)	C17—C16—C25—C24	179.1 (2)
C12—N—C11—C10	176.56 (19)	C2-C16-C25-C24	-2.9 (3)
C9—C10—C11—N	-167.9 (2)	C17—C16—C25—C20	-0.7 (3)
C1—C10—C11—N	9.6 (3)	C2-C16-C25-C20	177.34 (19)
C11—N—C12—C13	133.5 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O1—H1…N	0.82	1.79	2.530 (3)	148
O2—H2···O3	0.82	1.87	2.684 (2)	170
O3—H3…O1 ⁱ	0.82	2.06	2.828 (2)	156
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.				

